PRISM/PRIME

Akira SATO
Osaka University

Contents

- PRISM project
 - □ Overview&Design
 - □ Pulsed Proton Beam Facility
 - □ Construction of PRISM-FFAG
- PRIME
 - □ LFV
 - □ Background
 - ☐ Curved Solenoid Spectrometer
 - □ Sensitivity
- Summary

PRISM project

PRISM

Phase Rotated Intense Slow Muon source

secondary muon beam channel with high intensity
Superconducting Solenoid Magnet narrow energy spread
High purity
Phase rotation
dedicated for the stopped muon experiments.

- intensity: 10^{11} - 10^{12} \square +/sec
- muon kinetic energy :20 MeV (=68 MeV/c)
 - \square range = about 3 g
- kinetic energy spread : ±0.5-1.0 MeV
- \Box ±a few 100 mg range width
- beam repetition : about 100Hz

PRISM layout

- Pion capture section
- Decay section
- Phase rotation section

FFAG advantages:

- synchrotron oscillation
 - need to do phase rotation
- large momentum acceptance
 - necessary to accept large momentum distribution at the beginning to do phase rotation
- large transverse acceptance
 - muon beam is broad in space

Ring advantages:

- reduction of # of rf cavities
- reduction of rf power consumption
- compact

Phase Rotation

method to achieve a beam of narrow energy spread

Phase Rotation = decelerate particles with high energy and accelerate particle with low energy by high-field RF

A narrow pulse structure (<1 nsec) of proton beam is needed to ensure that high-energy particles come early and low-energy one come late.

Simulation studies of phase rotator

- GEANT3.21 simulation
 - ☐ FFAG Acceptance, Phase rotation
 - ☐ Muon yield, background rate

Pulsed Proton Beam Facility at J-PARC

50GeV-PS at J-PARC

- High intensity 0.75 MW
 - □ 10¹⁴proton/sec
 - □ Upgradable to 4x10¹⁴proton/sec
- A narrow bunched:

for phase rotation

New Fast extraction line is necessary

LOI was submitted to J-PARC

Request for A Pulsed Proton Beam Facility at J-PARC PRISM/PRIME, EDM ,g-2, Antiproton, NuFactJ

LOIs are available from:

http://psux1.kek.jp/~jhf-np/LOIlist/LOIlist.html

NuFact03@Colombia University

High-Intensity Low-Energy μ Source

Pulsed Proton Beam Facility at J-PARC (cont.)

PRISM R&D related talks

- 150MeV FFAG
 - ☐ 6 June 17:20 (WG3) J.Nakano
- PRISM target
 - □ 7 June 14:45 (WG2&3 joint) K. Yoshimura
- Pion production solenoid heat load mock-up test
 - □ 7 June 16:30 (WG2&3 joint) H.Ohnishi
- PRISM/PRISM-II
 - □ 7 June 11:30 (WG2&3 joint) M.Aoki
- FFAG construction for PRISM
 - □ 10 June 15:00 (WG3) A.Sato
- Normal and superconducting magnets for FFAG
 - □ 10 June 15:20 (WG3) M. Yoshimoto

Construction of the PRISM-FFAG

A budget for the PRISM-FFAG has been approved! FY2003-FY2007

We will construct a full scale PRISM-FFAG

- To establish by proof
 - □ Phase rotation
 - Muon acceleration
 - Muon ionization cooling
- R&D components
 - □ RF with high
 - 5MHz, 250kV/m
 - □ Large acceptance Magnet
 - muiti coil

FFAG construction for PRISM: 10th June (Tue.) 15:00 (WG3) A.Sato

Schedule of the PRISM-FFAG construction

- FY2003
 - □ Lattice design, Magnet design
 - □ RF R&D
- FY2004
 - □ RFx1gap construction & test
 - ☐ Magnetx1 construction & field

meas.

- FY2005
 - □ RFx4gap tuning
 - □ Magnetx7 construction
 - ☐ FFAG-ring construction
- FY2006
 - □ Commissioning
 - □ Phase rotation
- FY2007
 - Muon acceleration
 - Ionization cooling

Important first step to NuFact and muon collider

Application List with PRISM

- Particle, Nuclear Physics
 - ☐ Lepton flavor violation
 - **De conversion**, **PRIME**
 - []+ [] conversion
 - □ □ life time
 - □ [] edm
 - \square g-2

- Material Science
 - ☐ Muonic X-ray, ☐ sR
- Archeology
- Life science
 - □ Living cell
 - ☐ Brain scan

PRIME

PRISM Mu E conversion

Lepton Flavor Violation (LFV)

- LFV physics attracts a lot attention
 - □ Neutrino mass
 - □ g-2 new result
- LFV process in charged sector
 - □ Probes beyond standard model
 - ☐ flavor mixing (Slepton)

Search for the Lepton Flavor Violating Process

- No evidence so far for charged lepton
- Limits have been improved steadily
 - □ two orders of magnitude per decade
- Sensitivities are superb in muon systems
- Getting harder
 - ☐ To obtain/handle more intense muon

e conversion in a Muonic Atom

muonic atom (1s state)

nuclear muon capture muon decay in orbit $\mu^- + (A, Z) \rightarrow \nu_\mu + (A, Z - 1)$ $\mu^- \rightarrow e^- \nu \overline{\nu}$

neutrinoless muon nuclear capture (= / -e conversion)

$$\mu^- + (A,Z) \rightarrow e^- + (A,Z)$$

coherent process

$$B(\mu^- N \rightarrow e^- N) = \frac{\Gamma(\mu^- N \rightarrow e^- N)}{\Gamma(\mu^- N \rightarrow \nu N)}$$

LFV in SUSY GUT

- MECO@BNL.
- MEG@PSI
 - ☐ Equivalent sensitivity
- Future experiment

will cover most of parameter space with PRISM

Expected background source - Muon Decay in Orbit -

Muon decay in orbit ($\mu(E_{\Gamma e}-E_e)^5$)

$$\Box E_e > 103.9 \text{ MeV}$$

$$\Box$$
 $\Box E_e = 350 \text{ keV}$

$$N_{BG} \sim 0.05 @ R=10^{-18}$$

Background	Rate	comment
Muon decay in orbit	0.05	energy reso 350keV(FWHM)
Radiative muon capture	0.01	end point energy for Ti=89.7MeV
Radiative pion capture	0.03	long flight length in FFAG, 2 kicker
Pion decay in flight	0.008	long flight length in FFAG, 2 kicker
Beam electron	negligible	kinematically not allowed
Muon decay in flight	negligible	kinematically not allowed
Antiproton	negligible	absorber at FFAG entrance
Cosmic-ray	< 10^-7 events	low duty factor
Total	0.10	

• reduce the detector hit rate

Instantaneous rate: 10¹⁰muon/pulse

• precise measurement of the electron energy

Curved Solenoid Spectrometer

select a charged particle with a desired mom.

- Extract signal region only
 - Curvature drift

$$D = 1./(0.3B) \square s/R \square \frac{(p_s^2 + 0.5p_t^2)}{p_s}$$

- □ impose auxiliary field along the drift direction
- ☐ Block unwanted particles
 - Positive
 - DIO (P<90 GeV/c)
- Reduce background and single rate

Half-turn ver2.0(2002/12/12) Top View

Curved Solenoid Spectrometer

- Transport Efficiency -

- 53% of signal events can be transported successfully
- Background rate low

quite efficient!

Muon yield

- Estimated by using MC simulation.
- depends on the technology choice.; target, field magnitude ,,,
- Not fully optimized yet.

Target material	Capture	Transport	Muon yield per	Muon yield per
	field	field	10 ¹⁴ protons	$4 \times 10^{14} \text{ protons}$
Graphite	16 T	4 T	4.8×10^{10}	19×10^{10}
	16 T	2 T	3.6×10^{10}	14×10^{10}
	12 T	4 T	3.6×10^{10}	14×10^{10}
	12 T	2 T	3.0×10^{10}	12×10^{10}
	8 T	4 T	3.0×10^{10}	12×10^{10}
	8 T	2 T	2.4×10^{10}	9.6×10^{10}
	6 T	4 T	1.8×10^{10}	7.2×10^{10}
	6 T	2 T	1.8×10^{10}	7.2×10^{10}
Tungsten	16 T	4 T	13×10^{10}	50×10^{10}
	16 T	2 T	11×10^{10}	46×10^{10}
	12 T	4 T	9.6×10^{10}	38×10^{10}
	12 T	2 T	9.0×10^{10}	36×10^{10}
	8 T	4 T	6.0×10^{10}	24×10^{10}
	8 T	2 T	7.2×10^{10}	29×10^{10}
	6 T	4 T	4.2×10^{10}	17×10^{10}
	6 T	2 T	4.8×10^{10}	19×10^{10}

Target length
3 interaction length
FFAG acceptance
H:20000 mm mrad
V:3000 mm mrad V:3000 = 100% V:3000 = 100%

PRIME muon-LFV Sensitivity

	PRIME	MECO
Intensity (muons/sec)	1.3x10^11/sec	2X10^11/sec
Muon momentum	68 ± 2 MeV/c	15-90 MeV/c
mu stopping efficiency	80%	40%
Target material	Ti (life time=329 ns)	Al (life time=880 ns)
Physics Sensitivity	B(muN=>eN)/B(mu=>eg) =1/238	B(muN=>eN)/B(mu=>eg) $=1/389$
Target arrangement	20 layers of 50 um plate	(17-25) layers of200 um plate
Energy loss in target	<150 keV(FWHM)	636 keV(FWHM)
Spectrometer resolution	235 keV (FWHM)	900 keV (FWHM)
Spectrometer acceptance	35%	20%
Time window	Full time window (100%)	Delayed window (50%)
Beam Purity	mu only	mu, pi and e
Single event sensitivity	6x10^-19	2x10^-17
Remark	5 year (=10^7 sec/year) Remark running time; Analysis eff of 0.8 assumed.	

Summary

- PRISM&PRIME
 - □ Super muon beam with new technology for stopped muon experiments.
 - □ Single event sensitivity : B(\Box -+A -> e-+A) ~ 6x10⁻¹⁹
- LOI for New Fast Extraction Beamline and Exp Hall at J-PARC
 - □ Multi purpose
 - PRISM, g-2, □-EDM, antiproton, etc...
- A budget for the PRISM-FFAG has been approved. The PRISM-FFAG will be constructed by the end of 2007.
- Staging Scenario to NuFact and muon collider
 - □ PRISM can be a important step for the future muon physics and the NuFact.

